A special report on managing information
Data, data everywhereInformation has gone from scarce to superabundant. That brings huge new benefits, says Kenneth Cukier (interviewed here)—but also big headaches
Feb 25th 2010 | From The Economist print edition
WHEN the Sloan Digital Sky Survey started work in 2000, its telescope in New Mexico collected more data in its first few weeks than had been amassed in the entire history of astronomy. Now, a decade later, its archive contains a whopping 140 terabytes of information. A successor, the Large Synoptic Survey Telescope, due to come on stream in Chile in 2016, will acquire that quantity of data every five days.
Such astronomical amounts of information can be found closer to Earth too. Wal-Mart, a retail giant, handles more than 1m customer transactions every hour, feeding databases estimated at more than 2.5 petabytes—the equivalent of 167 times the books in America’s Library of Congress (see article for an explanation of how data are quantified). Facebook, a social-networking website, is home to 40 billion photos. And decoding the human genome involves analysing 3 billion base pairs—which took ten years the first time it was done, in 2003, but can now be achieved in one week.
All these examples tell the same story: that the world contains an unimaginably vast amount of digital information which is getting ever vaster ever more rapidly. This makes it possible to do many things that previously could not be done: spot business trends, prevent diseases, combat crime and so on. Managed well, the data can be used to unlock new sources of economic value, provide fresh insights into science and hold governments to account.
But they are also creating a host of new problems. Despite the abundance of tools to capture, process and share all this information—sensors, computers, mobile phones and the like—it already exceeds the available storage space (see chart 1). Moreover, ensuring data security and protecting privacy is becoming harder as the information multiplies and is shared ever more widely around the world.
Alex Szalay, an astrophysicist at Johns Hopkins University, notes that the proliferation of data is making them increasingly inaccessible. “How to make sense of all these data? People should be worried about how we train the next generation, not just of scientists, but people in government and industry,” he says.
“We are at a different period because of so much information,” says James Cortada of IBM, who has written a couple of dozen books on the history of information in society. Joe Hellerstein, a computer scientist at the University of California in Berkeley, calls it “the industrial revolution of data”. The effect is being felt everywhere, from business to science, from government to the arts. Scientists and computer engineers have coined a new term for the phenomenon: “big data”.
Epistemologically speaking, information is made up of a collection of data and knowledge is made up of different strands of information. But this special report uses “data” and “information” interchangeably because, as it will argue, the two are increasingly difficult to tell apart. Given enough raw data, today’s algorithms and powerful computers can reveal new insights that would previously have remained hidden.
The business of information management—helping organisations to make sense of their proliferating data—is growing by leaps and bounds. In recent years Oracle, IBM, Microsoft and SAP between them have spent more than $15 billion on buying software firms specialising in data management and analytics. This industry is estimated to be worth more than $100 billion and growing at almost 10% a year, roughly twice as fast as the software business as a whole.
...
Read more here/Leia mais aqui: The Economist