Decodificando a linguagem das células: mero acaso, fortuita necessidade ou design inteligente?

segunda-feira, abril 15, 2024

OrthoID: profiling dynamic proteomes through time and space using mutually orthogonal chemical tools

Ara Lee, Gihyun Sung, Sanghee Shin, Song-Yi Lee, Jaehwan Sim, Truong Thi My Nhung, Tran Diem Nghi, Sang Ki Park, Ponnusamy Pon Sathieshkumar, Imkyeung Kang, Ji Young Mun, Jong-Seo Kim, Hyun-Woo Rhee, Kyeng Min Park & Kimoon Kim

Nature Communications  15, Article number: 1851 (2024) 

Fig. 1: Schematic description of the protein labeling and identification process (OrthoID).


Identifying proteins at organelle contact sites, such as mitochondria-associated endoplasmic reticulum membranes (MAM), is essential for understanding vital cellular processes, yet challenging due to their dynamic nature. Here we report “OrthoID”, a proteomic method utilizing engineered enzymes, TurboID and APEX2, for the biotinylation (Bt) and adamantylation (Ad) of proteins close to the mitochondria and endoplasmic reticulum (ER), respectively, in conjunction with high-affinity binding pairs, streptavidin-biotin (SA-Bt) and cucurbit[7]uril-adamantane (CB[7]-Ad), for selective orthogonal enrichment of Bt- and Ad-labeled proteins. This approach effectively identifies protein candidates associated with the ER-mitochondria contact, including LRC59, whose roles at the contact site were—to the best of our knowledge—previously unknown, and tracks multiple protein sets undergoing structural and locational changes at MAM during mitophagy. These findings demonstrate that OrthoID could be a powerful proteomics tool for the identification and analysis of spatiotemporal proteins at organelle contact sites and revealing their dynamic behaviors in vital cellular processes. 

FREE PDF GRATIS: Nature Communications Sup. Info. Peer Review File

A ciência normal não é acrítica, tampouco dogmática

segunda-feira, abril 08, 2024

Normal science: not uncritical or dogmatic

Published: 27 March 2024

Synthese Volume 203, article number 108, (2024)


When Kuhn first published his Structure of Scientific Revolutions he was accused of promoting an “irrationalist” account of science. Although it has since been argued that this charge is unfair in one aspect or another, the early criticism still exerts an influence on our understanding of Kuhn. In particular, normal science is often characterized as dogmatic and uncritical, even by commentators sympathetic to Kuhn. I argue not only that there is no textual evidence for this view but also that normal science is much better understood as being based on epistemically justified commitment to a paradigm and as pragmatic in its handling of anomalies. I also argue that normal science is an example of what I call Kuhn’s program of revisionary rational reconstruction.