DNA como um perfeito computador quântico: mero acaso, fortuita necessidade ou design inteligente?

quinta-feira, maio 23, 2024

DNA as a perfect quantum computer based on the quantum physics principles

R. Riera Aroche, Y. M. Ortiz García, M. A. Martínez Arellano & A. Riera Leal

Scientific Reports volume 14, Article number: 11636 (2024)

Symmetries of DNA canonical base pairs quantum informational cryptography. (A) Chemical structure of the nitrogenous bases, pyrimidines, and purines. (B) A-T and C-G, in their mutual connection, have the same functional quantum state while retaining different structures and morphologies.


DNA is a complex multi-resolution molecule whose theoretical study is a challenge. Its intrinsic multiscale nature requires chemistry and quantum physics to understand the structure and quantum informatics to explain its operation as a perfect quantum computer. Here, we present theoretical results of DNA that allow a better description of its structure and the operation process in the transmission, coding, and decoding of genetic information. Aromaticity is explained by the oscillatory resonant quantum state of correlated electron and hole pairs due to the quantized molecular vibrational energy acting as an attractive force. The correlated pairs form a supercurrent in the nitrogenous bases in a single band-molecular orbital (-MO). The MO wave function is assumed to be the linear combination of the n constituent atomic orbitals. The central Hydrogen bond between Adenine (A) and Thymine (T) or Guanine (G) and Cytosine (C) functions like an ideal Josephson Junction. The approach of a Josephson Effect between two superconductors is correctly described, as well as the condensation of the nitrogenous bases to obtain the two entangled quantum states that form the qubit. Combining the quantum state of the composite system with the classical information, RNA polymerase teleports one of the four Bell states. DNA is a perfect quantum computer.

FREE PDF GRATIS: Science Reports



Darwin, você precisa de mais uma nova teoria para explicar o fato, Fato, FATO da evolução

sexta-feira, maio 03, 2024

Progress in Biophysics and Molecular Biology
Volume 189, July 2024, Pages 26-31

Cooperative genes in smart systems: Toward an inclusive new synthesis in evolution☆
Peter A, Corning

Institute for the Study of Complex Systems, 1390 158th Place NE #616, Bellevue, WA, 98008, USA

Received 28 February 2024, Revised 3 April 2024, Accepted 3 April 2024, Available online 7 April 2024, Version of Record 27 April 2024.




    • The “Modern Synthesis” in evolution emphasizes a competitive “struggle for existence” among “selfish genes”.    

   • Over the years many other sources of evolutionary causation have been identified.

    • This prompted the proposal for an “extended synthesis”.

    • However, it is now evident that genes play only a minor role in evolution.

   • It's time to abandon the Modern Synthesis and develop a more “inclusive” synthesis.


For more than half a century, biologist Julian Huxley's term, the “Modern Synthesis”, has been used as a label for a model of biological evolution where genetic influences are viewed as a principal source of creativity and change. Over the years, as evidence has accumulated that there are many other, far more important factors at work in evolution, theoretical “compromises,” such as the so-called “Extended Synthesis”, have been proposed. This is no longer tenable. It is time to abandon the Modern Synthesis, and its doppelganger “The Selfish Gene”. Here is the case for a new, multi-faceted, open-ended, “inclusive” evolutionary synthesis, where living systems themselves are recognized as purposeful (teleonomic) “agents” and cooperative effects (synergies) of various kinds are seen as all-important influences.

Payment or subscription needed/Requer pagamento ou assinatura:

Progress in Biophysics and Molecular Biology

Darwin, nós temos problemas: alguns pensamentos heterodoxos sobre a teoria da evolução

quarta-feira, maio 01, 2024

Introduction: Heterodox Thinking on Evolution

J. Scott Turner


Homeostasis and Purposeful Evolution Homeostasis and Purposeful Evolution

J. Scott Turner


Evolving Views on the Science of Evolution

Nathalie Gontier


Do Organisms Have Goals and Purpose?

Amelia Lewis


Evolution Is Neither Random Accidents nor Divine Intervention: Biological Action Changes Genomes

James A. Shapiro


Heterodox Thinking on Evolution and Radical Enlightenment

Richard I. Vane-Wright