New Analyses Of Dinosaur Growth May Wipe Out One-third Of Species
ScienceDaily (Oct. 31, 2009) — Paleontologists from the University of California, Berkeley, and the Museum of the Rockies have wiped out two species of dome-headed dinosaur, one of them named three years ago -- with great fanfare -- after Hogwarts, the school attended by Harry Potter.
Their demise comes after a three-horned dinosaur, Torosaurus, was assigned to the dustbin of history last month at the Society of Vertebrate Paleontology meeting in the United Kingdom, the loss in recent years of quite a few duck-billed hadrosaurs and the probable disappearance of Nanotyrannus, a supposedly miniature Tyrannosaurus rex.
Dracorex (upper left) and Stygimoloch (upper right) are not distinct dome-headed dinosaurs, but young and nearly sexually mature, respectively, members of the species Pachycephalosaurus wyomingensis, according to a new study by paleontologists from UC Berkeley and the Museum of the Rockies. (Credit: Holly Woodward/Montana State University)
These dinosaurs were not separate species, as some paleontologists claim, but different growth stages of previously named dinosaurs, according to a new study. The confusion is traced to their bizarre head ornaments, ranging from shields and domes to horns and spikes, which changed dramatically with age and sexual maturity, making the heads of youngsters look very different from those of adults.
"Juveniles and adults of these dinosaurs look very, very different from adults, and literally may resemble a different species," said dinosaur expert Mark B. Goodwin, assistant director of UC Berkeley's Museum of Paleontology. "But some scientists are confusing morphological differences at different growth stages with characteristics that are taxonomically important. The result is an inflated number of dinosaurs in the late Cretaceous."
Goodwin and John "Jack" Horner of the Museum of the Rockies at Montana State University in Bozeman, are the authors of a new paper analyzing North American dome-headed dinosaurs that appeared this week in the public access online journal PLoS One.
Unlike the original dinosaur die-off at the end of the Cretaceous period 65 million years ago, this loss of species is the result of a sustained effort by paleontologists to collect a full range of dinosaur fossils -- not just the big ones. Their work has provided dinosaur specimens of various ages, allowing computed tomography (CT) scans and tissue study of the growth stages of dinosaurs.
In fact, Horner suggests that one-third of all named dinosaur species may never have existed, but are merely different stages in the growth of other known dinosaurs.
"What we are seeing in the Hell Creek Formation in Montana suggests that we may be overextended by a third," Horner said, a "wild guess" that may hold true for the various horned dinosaurs recently discovered in Asia from the Cretaceous. "A lot of the dinosaurs that have been named recently fall into that category."
The new paper, published online Oct. 27, contains a thorough analysis of three of the four named dome-headed dinosaurs from North America, including Pachycephalosaurus wyomingensis, the first "thick-headed" dinosaur discovered. After that dinosaur's description in 1943, many speculated that male pachycephalosaurs used their bowling ball-like domes to head-butt one another like big-horn sheep, though Goodwin and Horner disproved that notion in 2004 after a thorough study of the tissue structure of the dome.
...
Read more here/Leia mais aqui.
+++++
Journal reference:
John R. Horner, Mark B. Goodwin. Extreme Cranial Ontogeny in the Upper Cretaceous Dinosaur Pachycephalosaurus. PLoS ONE, 2009; DOI: 10.1371/journal.pone.0007626
Adapted from materials provided by University of California - Berkeley.
+++++
Extreme Cranial Ontogeny in the Upper Cretaceous Dinosaur Pachycephalosaurus
John R. Horner1*, Mark B. Goodwin2
1 Museum of the Rockies, Montana State University, Bozeman, Montana, United States of America, 2 Museum of Paleontology, University of California, Berkeley, California, United States of America
Abstract Top
Background
Extended neoteny and late stage allometric growth increase morphological disparity between growth stages in at least some dinosaurs. Coupled with relatively low dinosaur density in the Upper Cretaceous of North America, ontogenetic transformational representatives are often difficult to distinguish. For example, many hadrosaurids previously reported to represent relatively small lambeosaurine species were demonstrated to be juveniles of the larger taxa. Marginocephalians (pachycephalosaurids + ceratopsids) undergo comparable and extreme cranial morphological change during ontogeny.
Methodology/Principal Findings
Cranial histology, morphology and computer tomography reveal patterns of internal skull development that show the purported diagnostic characters for the pachycephalosaurids Dracorex hogwartsia and Stygimoloch spinifer are ontogenetically derived features. Coronal histological sections of the frontoparietal dome of an adult Pachycephalosaurus wyomingensis reveal a dense structure composed of metaplastic bone with a variety of extremely fibrous and acellular tissue. Coronal histological sections and computer tomography of a skull and frontoparietal dome of Stygimoloch spinifer reveal an open intrafrontal suture indicative of a subadult stage of development. These dinosaurs employed metaplasia to rapidly grow and change the size and shape of their horns, cranial ornaments and frontoparietal domes, resulting in extreme cranial alterations during late stages of growth. We propose that Dracorex hogwartsia, Stygimoloch spinifer and Pachycephalosaurus wyomingensis are the same taxon and represent an ontogenetic series united by shared morphology and increasing skull length.
Conclusions/Significance
Dracorex hogwartsia (juvenile) and Stygimoloch spinifer (subadult) are reinterpreted as younger growth stages of Pachycephalosaurus wyomingensis (adult). This synonymy reduces the number of pachycephalosaurid taxa from the Upper Cretaceous of North America and demonstrates the importance of cranial ontogeny in evaluating dinosaur diversity and taxonomy. These growth stages reflect a continuum rather than specific developmental steps defined by “known” terminal morphologies.
Citation: Horner JR, Goodwin MB (2009) Extreme Cranial Ontogeny in the Upper Cretaceous Dinosaur Pachycephalosaurus. PLoS ONE 4(10): e7626. doi:10.1371/journal.pone.0007626
Editor: Paul Sereno, University of Chicago, United States of America
Received: May 28, 2009; Accepted: September 8, 2009; Published: October 27, 2009
Copyright: © 2009 Horner, Goodwin. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Funding: University of California Museum of Paleontology provided funding to MBG. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Competing interests: The authors have declared that no competing interests exist.
* E-mail: jhorner@montana.edu
+++++
FREE PDF GRÁTIS