EXTRA! EXTRA! O Archaeopteryx não era assim uma Brastemp de arquétipo aviano

sábado, outubro 10, 2009

Archaeopteryx Was Not Very Bird-like: Inside The First Bird, Surprising Signs Of A Dinosaur

ScienceDaily (Oct. 9, 2009) — The raptor-like Archaeopteryx has long been viewed as the archetypal first bird, but new research reveals that it was actually a lot less "bird-like" than scientists had believed.

In fact, the landmark study led by paleobiologist Gregory M. Erickson of The Florida State University has upended the iconic first-known-bird image of Archaeopteryx (from the Greek for "ancient wing"), which lived 150 million years ago during the Late Jurassic period in what is now Germany. Instead, the animal has been recast as more of a feathered dinosaur -- bird on the outside, dinosaur on the inside.


This is the slab and counter slab of the Munich Archaeopteryx. (Credit: Mick Ellison/AMNH)

That's because new, microscopic images of the ancient cells and blood vessels inside the bones of the winged, feathered, claw-handed creature show unexpectedly slow growth and maturation that took years, similar to that found in dinosaurs, from which birds evolved. In contrast, living birds grow rapidly and mature in a matter of weeks.

Also groundbreaking is the finding that the rapid bone growth common to all living birds but surprisingly absent from the Archaeopteryx was not necessary for avian dinosaur flight.

The study is published in the Oct. 9, 2009, issue of the journal PLoS ONE. In addition to Erickson, an associate professor in Florida State's Department of Biological Science and a research associate at the American Museum of Natural History, co-authors include Florida State University biologist Brian D. Inouye and other U.S. scientists, as well as researchers from Germany and China.

"Living birds mature very quickly," Erickson said. "That's why we rarely see baby birds among flocks of invariably identical-size pigeons. Slow-growing animals such as Archaeopteryx would look foreign to contemporary bird-watchers."

Erickson said evidence already confirms that birds are, in fact, dinosaurs. "But just how dinosaur-like -- or even bird-like -- was the first bird?" he asked. "Almost nothing had been known of Archaeopteryx biology. There has been debate as to how well it flew, if at all. Some have suggested that early bird physiology may have been very different from living birds, but no one had tested fossils that were close to the base of bird ancestry."

Fossilized remains of Archaeopteryx were found in Germany in 1860, one year after Charles Darwin's "Origin of Species" was published. With its combination of bird-like features, including feathers and a wishbone, and reptilian ones -- teeth, three-fingered hands, a long bony tail -- the skeleton made evolutionary theory more credible. The 1860s evolutionist Thomas Henry Huxley saw the Archaeopteryx as a perfect transition between birds and reptiles. Erickson calls it "the poster child for evolution."

"For our study, which required tremendous collaboration, we set out to determine how Archaeopteryx grew and compare its growth to living birds, closely related non-avian dinosaurs, and other early birds that came after it," Erickson said. "I went to Munich with my colleague Mark Norell from the American Museum of Natural History, and we met with Oliver Rauhut, curator of the Bavarian State Collection for Palaeontology and Geology, which houses a small juvenile Archaeopteryx that is one of 10 specimens discovered to date. From that specimen, we extracted tiny bone chips and then examined them microscopically."

Surprisingly, the bones of the juvenile Archaeopteryx were not the highly vascularized, fast-growing type, as in other avian dinosaurs. Instead, Erickson found lizard-like, dense, nearly avascular bone.

...

Journal reference:

Erickson et al. Was Dinosaurian Physiology Inherited by Birds? Reconciling Slow Growth in Archaeopteryx. PLoS ONE, 2009; 4 (10): e7390 DOI: 10.1371/journal.pone.0007390

Read more here/Leia mais aqui.

+++++

Was Dinosaurian Physiology Inherited by Birds? Reconciling Slow Growth in Archaeopteryx

Gregory M. Erickson1,6*, Oliver W. M. Rauhut2, Zhonghe Zhou3, Alan H. Turner4,6, Brian D. Inouye1, Dongyu Hu5, Mark A. Norell6

1 Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America,

2 Bayerische Staatssammlung für Paläontologie und Geologie and Department of Earth and Environmental Sciences, LMU Munich, München, Germany,

3 Key Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology & Paleoanthropology, Chinese Academy of Science, Beijing, China,

4 Department of Anatomical Sciences, Stony Brook University, Stony Brook, New York, United States of America,

5 Paleontological Institute, Shenyang Normal University, Shenyang, China,

6 Division of Paleontology, American Museum of Natural History, New York, New York, United States of America

Abstract Top

Background

Archaeopteryx is the oldest and most primitive known bird (Avialae). It is believed that the growth and energetic physiology of basalmost birds such as Archaeopteryx were inherited in their entirety from non-avialan dinosaurs. This hypothesis predicts that the long bones in these birds formed using rapidly growing, well-vascularized woven tissue typical of non-avialan dinosaurs.

Methodology/Principal Findings

We report that Archaeopteryx long bones are composed of nearly avascular parallel-fibered bone. This is among the slowest growing osseous tissues and is common in ectothermic reptiles. These findings dispute the hypothesis that non-avialan dinosaur growth and physiology were inherited in totality by the first birds. Examining these findings in a phylogenetic context required intensive sampling of outgroup dinosaurs and basalmost birds. Our results demonstrate the presence of a scale-dependent maniraptoran histological continuum that Archaeopteryx and other basalmost birds follow. Growth analysis for Archaeopteryx suggests that these animals showed exponential growth rates like non-avialan dinosaurs, three times slower than living precocial birds, but still within the lowermost range for all endothermic vertebrates.

Conclusions/Significance

The unexpected histology of Archaeopteryx and other basalmost birds is actually consistent with retention of the phylogenetically earlier paravian dinosaur condition when size is considered. The first birds were simply feathered dinosaurs with respect to growth and energetic physiology. The evolution of the novel pattern in modern forms occurred later in the group's history.

Citation: Erickson GM, Rauhut OWM, Zhou Z, Turner AH, Inouye BD, et al. (2009) Was Dinosaurian Physiology Inherited by Birds? Reconciling Slow Growth in Archaeopteryx. PLoS ONE 4(10): e7390. doi:10.1371/journal.pone.0007390

Editor: Robert DeSalle, American Museum of Natural History, United States of America

Received: June 6, 2009; Accepted: September 16, 2009; Published: October 9, 2009

Copyright: © 2009 Erickson et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was generously funded by an DFG grant RA 1012/4 to OWMR, NSF DBI 0446224 and EAR 04418649 grants to GME, an NSF ATOL 0228693 grant to MAN, and the Major Basic Research Projects [2006CB806400] of MST of China to ZZ. The funders had no role in study design, data collection, and analysis, decision to publish, or preparation of the manuscript.

Competing interests: The authors have declared that no competing interests exist.

* E-mail: gerickson@bio.fsu.edu

+++++

OPEN ACCESS PDF ACESSO LIVRE

+++++

NOTA IMPERTINENTE DESTE BLOGGER:

Alô MEC/SEMTEC/PNLEM este é mais um ícone da evolução a ser removido de nossos livros didáticos de Biologia do ensino médio.

Serviço de utilidade publica e científica deste blogger para o avanço da ciência.