Usando o design inteligente do DNA em chips de computadores

quinta-feira, agosto 27, 2009

Dizem os críticos da Teoria do Design Inteligente que o design que vemos na natureza é ILUSÃO (Richard Dawkins), e que não é possível detectar sinais de design inteligente na natureza.

No entanto, contudo, todavia, mas, porém, não obstante, por outro lado, os cientistas aqui e ali 'detectam' design na natureza, publicam seus artigos e pesquisas sobre design inteligente...

Como que esses cientistas 'detectaram' sinais de design no DNA para a construção de melhores chips para computadores???

+++++

Nature Nanotechnology
Published online: 16 August 2009 | doi:10.1038/nnano.2009.220

Placement and orientation of individual DNA shapes on lithographically patterned surfaces

Ryan J. Kershner1,4, Luisa D. Bozano1, Christine M. Micheel1,4, Albert M. Hung1,4, Ann R. Fornof1,4, Jennifer N. Cha1,4, Charles T. Rettner1, Marco Bersani1,4, Jane Frommer1, Paul W. K. Rothemund2 & Gregory M. Wallraff1

Abstract

Artificial DNA nanostructures1, 2 show promise for the organization of functional materials3, 4 to create nanoelectronic5 or nano-optical devices. DNA origami, in which a long single strand of DNA is folded into a shape using shorter 'staple strands'6, can display 6-nm-resolution patterns of binding sites, in principle allowing complex arrangements of carbon nanotubes, silicon nanowires, or quantum dots. However, DNA origami are synthesized in solution and uncontrolled deposition results in random arrangements; this makes it difficult to measure the properties of attached nanodevices or to integrate them with conventionally fabricated microcircuitry. Here we describe the use of electron-beam lithography and dry oxidative etching to create DNA origami-shaped binding sites on technologically useful materials, such as SiO2 and diamond-like carbon. In buffer with 100 mM MgCl2, DNA origami bind with high selectivity and good orientation: 70–95% of sites have individual origami aligned with an angular dispersion (1 s.d.) as low as 10° (on diamond-like carbon) or 20° (on SiO2).

top of page

IBM Almaden Research Center, San Jose, California 95120, USA
Department of Bioengineering, Computer Science, and Computation & Neural Systems, California Institute of Technology, Pasadena, California 91125, USA
Present address: University of Wisconsin, Madison, Wisconsin 53706, USA (R.J.K); The National Academies, Washington DC 20001, USA (C.M.M.); Department of Nanoengineering, University of California, San Diego, California 92093, USA (A.M.H., J.N.C.); Center for Nanoscience, Ludwig-Maximilians Universität, 80799 Munich, Germany (A.R.F.); Dipartimento di Fisica, Università di Padova, I-35131 Padova, Italy (M.B.)

Correspondence to: Paul W. K. Rothemund2 e-mail: pwkr@dna.caltech.edu

Correspondence to: Gregory M. Wallraff1 e-mail: gmwall@almaden.ibm.com

++++++

Algumas das fotos utilizando design encontrado no DNA: