by Rolf-Dieter Heuer — 17.05.2011
Rolf-Dieter Heuer is the director of the European Organization for Nuclear Research and oversees the vast CERN laboratories in Switzerland. He sat down with Martin Eiermann to talk about the search for the Higgs Boson, the limits of human knowledge and the distinction between science and religion.
The European: The mission of CERN is to conduct experiments that push the limits of physics. What are the challenges for the coming decade?
Heuer: In the area of particle physics, we need many years to run our experiments and analyze the data. In the past fifty years, we have developed the Standard Model of particle physics. It describes the microcosm as we know it: the matter particles and the forces between them. But we are still missing one cornerstone to explain how elementary particles get their mass. We think that the Higgs mechanism could provide the answer to that question. The manifestation of that mechanism is something called the Higgs Boson – a particle that is thought to exist but hasn’t been found in experiments yet. Our goal is to find the Higgs Boson. If we succeed, then we will conclude the theory of the Standard Model.
The European: What consequences would that discovery have for our understanding of the physical world? Is it an achievement on par with Rutherford’s discovery of the atomic nucleus, with the Michelson-Morley experiment, with Newton’s prism experiments?
Heuer: It would be a very big step in physics because it would complete the Standard Model. And if we fail to find it, we would need to develop a new mathematical formalism to explain how particles get their mass. Either way, the impact would be significant. But the Standard Model only describes around five percent of the universe. Around a quarter of the universe is so-called “dark matter”, three quarters are “dark energy”. So an even bigger step would be to find traces of dark matter in the laboratory. I hope that we will achieve that within the next few years.
The European: CERN is a gigantic laboratory and it is hard to imagine that we would build something bigger in the near future. Does the future belong to theoretical physics, because the questions we are trying to answer cannot be examined through experiments anymore?
Heuer:Theory and experiment need each other. But the question is less about size and more about power. The Large Hadron Collider (LHC) is a very powerful microscope with very good resolution power. It can work with very small wavelengths, which means very high energy levels. But we don’t need to build bigger particle accelerators to achieve even higher energy levels; it can also be done through new technologies. The LHC tunnel – a structure with a 27 kilometer circumference – used to house another accelerator with much lower energy levels ten years ago. Now we are using the same infrastructure with different particles and new acceleration technologies to achieve more energy per unit length. So we have not reached the end of the development of experimental physics. To the contrary: If the LHCexperiments yield results, we will have a much better understanding of the relevant energy levels and can custom-build the next generation of accelerators.
The European: What fascinates you about these very theoretical questions?
Heuer: It’s a quest for knowledge. The questions we are examining have been asked since the beginning of mankind. We are humans, we want to understand the world around us. How did things begin? How did the universe develop? That distinguishes us from other creatures. If you go outside at night and look up into the sky, you cannot help but dream. Your fantasy develops, you are naturally drawn to these questions about being and existence. And at the same time, our work has very practical consequences. When antimatter was introduced into the theoretical framework 83 years ago, nobody thought that this had any practical relevance. Yet today, the concept is used in hospitals around the world on a daily basis. Positron Emission Tomography (PET) is based on the positron, which is the anti-particle to the electron. Or take the internet. The idea of a worldwide network started in 1989 here at CERN, because we needed that kind of digital network for our scientific work. That’s the beauty of our research: We gain knowledge but we also gain the potential for technological innovation.
+++++
+++++
Read more here/Leia mais aqui.
+++++
NOTA DESTE BLOGGER:
Depois eu vou postar algo sobre este grupo de jornalistas. O que vi lá me deixou ainda mais profundamente envergonhado com a Grande Mídia Tupiniquim.
+++++
NOTA DESTE BLOGGER:
Depois eu vou postar algo sobre este grupo de jornalistas. O que vi lá me deixou ainda mais profundamente envergonhado com a Grande Mídia Tupiniquim.