ScienceDaily (May 29, 2010) — You might call it comparing apples and oranges, but lining up different species' genomes is common practice in evolutionary research. Scientists can see how species have evolved, pinpoint which sections of DNA are similar between species, meaning they probably are crucial to the animals' survival, or sketch out evolutionary trees in places where the fossil record is spotty.
"We discovered that there's a disturbingly low level of agreement between genome alignments produced by different tools," said corresponding author Martin Tompa, a UW professor of computer science and engineering and of genome sciences. "What this should suggest to biologists is that they should be very cautious about trusting these alignments in their entirety."
Aligning genomes, while simple in theory, is difficult in practice. Aligning more than two sequences becomes much harder with every additional sequence. At the scale of a mammal's entire genome, all of its genetic code, finding the optimal alignment of many genomes is far beyond the capabilities of any computer, Tompa said.
Various software tools instead use strategic shortcuts.
"At a high level the tools are very similar," Tompa said. "They make different decisions at the lower, more detailed levels, and those decisions seem to have widespread effect on the outcome."
The new paper compared the alignments from a previous study in which four research teams each took the same 1 percent of the human genome and aligned it to the genomes of 27 other vertebrate animals, ranging from mouse to elephant.
"This is a marvelous dataset," Tompa said. "It's a very large-scale multiple sequence alignment, done by four expert teams using four different tools, all of them working on the same input sequences."
However, the new study found that the resulting alignments were quite different. The authors also compared the coverage of each tool, meaning how much of the human DNA it was able to match to each other species, as well as what fraction of alignments were suspiciously close to a random match.
...
Read more here/Leia mais aqui: Science Daily
+++++
Xiaoyu Chen & Martin Tompa
Affiliations
Contributions
Corresponding authorNature Biotechnology (2010) doi:10.1038/nbt.1637Received 21 December 2009 Accepted 27 April 2010 Published online 23 May 2010
Abstract
Affiliations