Synthetic Biology: fostering the cyber-biological revolution
Jean Peccoud
DOI: http://dx.doi.org/10.1093/synbio/ysw001 ysw001
First published online: 15 June 2016
Abstract
On January 20, 2000, Nature published two articles reporting the design, fabrication, and characterization of two artificial gene networks. Timothy Gardner, Jim Collins, and Charles Cantor described a genetic toggle switch that could be flipped between an ON and OFF states using transient environmental signals [1]. Michael Elowitz and Stanislas Leibler described the Repressilator, a genetic circuit that exhibited oscillations of the expression of a reporter gene [2].
On the face of it, these two articles looked like biology papers. They included the description of new plasmids and reported data collected with instruments commonly used by biologists. And there was nothing particularly new in these experiments. Many molecular biologists had the skills necessary to assemble and characterize these plasmids but none of them thought of designing them. It took the minds of a mechanical engineer (T. Gardner) and a physicist (M. Elowitz) to imagine these circuits. The novelty of these articles was not so much in their biological aspect as it was in the applications of engineering principles to the design of circuits encoded in DNA molecules. These two articles have been a source of inspiration for many of us. They have catalyzed the emergence of a movement of dreamers aspiring to engineer DNA like their parents engineered silicon. This movement eventually led to the emergence of synthetic biology as a new field of engineering [3–5].
Fifteen years later, we have come to appreciate the culture change that synthetic biology calls for. We see many indications that this specialty has the potential to support an industrial revolution fueled by the emergence of cyber-biological systems across many segments of the economy. The dynamics between scientific breakthroughs and innovative industrial applications is well illustrated by the career paths of the discipline pioneers. Gardner left academia for industry 10 years ago to join one of the first synthetic biology startups while Elowitz stayed in academia where his work continues to deeply renew our understanding of biological processes.
FREE PDF GRATIS: Synthetic Biology