A modelagem genômica do menor de todos os micróbios precisou de 128 computadores!!!

sábado, novembro 21, 2015

A Whole-Cell Computational Model Predicts Phenotype from Genotype

Jonathan R. Karr 4, Jayodita C. Sanghvi 4, Derek N. Macklin, Miriam V. Gutschow, Jared M. Jacobs, Benjamin Bolival Jr., Nacyra Assad-Garcia, John I. Glass, Markus W. Covert correspondence email

4 These authors contributed equally to this work

Open Archive


Publication History

Accepted: May 14, 2012

Received in revised form: April 20, 2012

Received: March 8, 2012



Highlights

An entire organism is modeled in terms of its molecular components.

Complex phenotypes can be modeled by integrating cell processes into a single model.

Unobserved cellular behaviors are predicted by model of M. genitalium.

New biological processes and parameters are predicted by model of M. genitalium.

Summary

Understanding how complex phenotypes arise from individual molecules and their interactions is a primary challenge in biology that computational approaches are poised to tackle. We report a whole-cell computational model of the life cycle of the human pathogen Mycoplasma genitalium that includes all of its molecular components and their interactions. An integrative approach to modeling that combines diverse mathematics enabled the simultaneous inclusion of fundamentally different cellular processes and experimental measurements. Our whole-cell model accounts for all annotated gene functions and was validated against a broad range of data. The model provides insights into many previously unobserved cellular behaviors, including in vivo rates of protein-DNA association and an inverse relationship between the durations of DNA replication initiation and replication. In addition, experimental analysis directed by model predictions identified previously undetected kinetic parameters and biological functions. We conclude that comprehensive whole-cell models can be used to facilitate biological discovery.

Received: March 8, 2012; Received in revised form: April 20, 2012; Accepted: May 14, 2012;

© 2012 Elsevier Inc. Published by Elsevier Inc.

FREE PDF GRATIS: Cell

+++++

NOTA DESTE BLOGGER PARA SER PONDERADA CUM GRANO SALIS

Esses pesquisadores trabalharam com o M. genitalium, um dos menores genomas do mundo: 525 genes. 128 computadores trabalhando entre 9 a 10 horas para gerar os dados sobre as 25 categorias de moléculas envolvidas nos processos do ciclo de vida da célula. Meio 
gigabyte de dados, gente!

Você sabe que milhões de bactérias podem caber na cabeça de um alfinete, e que algumas delas são muito mais complexas do que o M. genitalium. Considere agora o fato do corpo humano ter 10 trilhões de (grandes, complexas) células humanas, e mais cerca de 90 ou 100 trilhões de células bacterianas. Qual é o resultado? Cerca de 100.000.000.000.000 (cem trilhões).

Já pensou quantos computadores como esses usados na Stanford University e no J. Craig Venter Institute seriam necessários para modelar isso? Como se isso fosse possível para o mero acaso, para a fortuita necessidade, somente através da seleção natural e n mecanismos evolucionários de A a Z (vai que um falhe...), não é Darwin? Pode isso, Arnaldo?

Fui, nem sei por que, mas cada vez mais convencido de que as especulações transformistas de Darwin deram chabu!!!