Células têm bússolas que as conduzem até aos ferimentos. Darwin ou Design Inteligente explica melhor isso?

quarta-feira, abril 10, 2013

Keratocyte Fragments and Cells Utilize Competing Pathways to Move in Opposite Directions in an Electric Field


Current Biology, Volume 23, Issue 7, 569-574, 28 March 2013
Copyright © 2013 Elsevier Ltd All rights reserved.
10.1016/j.cub.2013.02.026


Authors

Yaohui Sun, Hao Do, Jing Gao, Ren Zhao, Min Zhao, Alex MogilnerSee 

Affiliations

Highlights

A cell fragment is the simplest motile electric-field-sensing unit

Keratocyte cells and fragments migrate in opposite directions in an electric field

Competition of two signal transduction pathways underlies keratocyte galvanotaxis

Protrusive and contractile actin networks are steered by the electric field



Summary

Sensing of an electric field (EF) by cells—galvanotaxis—is important in wound healing [1], development [2], cell division, nerve growth, and angiogenesis [3]. Different cell types migrate in opposite directions in EFs [4], and the same cell can switch the directionality depending on conditions [5]. A tug-of-war mechanism between multiple signaling pathways [6] can direct Dictyostelium cells to either cathode or anode. Mechanics of motility is simplest in fish keratocytes, so we turned to keratocytes to investigate their migration in EFs. Keratocytes sense electric fields and migrate to the cathode [7,8]. Keratocyte fragments [9,10] are the simplest motile units. Cell fragments from leukocytes are able to respond to chemotactic signals [11], but whether cell fragments are galvanotactic was unknown. We found that keratocyte fragments are the smallest motile electric field-sensing unit: they migrate to the anode, in the opposite direction of whole cells. Myosin II was essential for the direction sensing of fragments but not for parental cells, while PI3 kinase was essential for the direction sensing of whole cells but not for fragments. Thus, two signal transduction pathways, one depending on PI3K, another on myosin, compete to orient motile cells in the electric field. Galvanotaxis is not due to EF force and does not depend on cell or fragment size. We propose a “compass” model according to which protrusive and contractile actomyosin networks self-polarize to the front and rear of the motile cell, respectively, and the electric signal orients both networks toward cathode with different strengths.

+++++

Subscription our payment needed/Requer assinatura ou pagamento:

Current Biology

+++++

PERGUNTA DESTE BLOGGER:

Darwin ou Design Inteligente explicar melhor essa questão teleológica? Afinal de contas, as células dispõe de 'bússolas' que as 'orientam' até aos ferimentos???