Olivia P. Judson e sua nova grande teoria da evolução da vida na Terra: as expansões de energia da evolução.

segunda-feira, maio 22, 2017

The energy expansions of evolution

Olivia P. Judson

Nature Ecology & Evolution 1, Article number: 0138 (2017)

doi:10.1038/s41559-017-0138 

Download Citation

Coevolution Ecology

Received: 27 September 2016 Accepted: 15 March 2017

Published online: 28 April 2017

Figure 1: Key events during the energy expansions of evolution.

Abstract

The history of the life–Earth system can be divided into five ‘energetic’ epochs, each featuring the evolution of life forms that can exploit a new source of energy. These sources are: geochemical energy, sunlight, oxygen, flesh and fire. The first two were present at the start, but oxygen, flesh and fire are all consequences of evolutionary events. Since no category of energy source has disappeared, this has, over time, resulted in an expanding realm of the sources of energy available to living organisms and a concomitant increase in the diversity and complexity of ecosystems. These energy expansions have also mediated the transformation of key aspects of the planetary environment, which have in turn mediated the future course of evolutionary change. Using energy as a lens thus illuminates patterns in the entwined histories of life and Earth, and may also provide a framework for considering the potential trajectories of life–planet systems elsewhere.

Free energy is a universal requirement for life. It drives mechanical motion and chemical reactions—which in biology can change a cell or an organism1,2. Over the course of Earth history, the harnessing of free energy by organisms has had a dramatic impact on the planetary environment3,​4,​5,​6,​7. Yet the variety of free-energy sources available to living organisms has expanded over time. These expansions are consequences of events in the evolution of life, and they have mediated the transformation of the planet from an anoxic world that could support only microbial life, to one that boasts the rich geology and diversity of life present today. Here, I review these energy expansions, discuss how they map onto the biological and geological development of Earth, and consider what this could mean for the trajectories of life–planet systems elsewhere.