Reconstruction of Ancestral Metabolic Enzymes Reveals Molecular Mechanisms Underlying Evolutionary Innovation through Gene Duplication
Karin Voordeckers equal contributor, Chris A. Brown equal contributor, Kevin Vanneste, Elisa van der Zande, Arnout Voet, Steven Maere, Kevin J. Verstrepen
Abstract
Gene duplications are believed to facilitate evolutionary innovation. However, the mechanisms shaping the fate of duplicated genes remain heavily debated because the molecular processes and evolutionary forces involved are difficult to reconstruct. Here, we study a large family of fungal glucosidase genes that underwent several duplication events. We reconstruct all key ancestral enzymes and show that the very first preduplication enzyme was primarily active on maltose-like substrates, with trace activity for isomaltose-like sugars. Structural analysis and activity measurements on resurrected and present-day enzymes suggest that both activities cannot be fully optimized in a single enzyme. However, gene duplications repeatedly spawned daughter genes in which mutations optimized either isomaltase or maltase activity. Interestingly, similar shifts in enzyme activity were reached multiple times via different evolutionary routes. Together, our results provide a detailed picture of the molecular mechanisms that drove divergence of these duplicated enzymes and show that whereas the classic models of dosage, sub-, and neofunctionalization are helpful to conceptualize the implications of gene duplication, the three mechanisms co-occur and intertwine.
Author Summary
Darwin's theory of evolution is one of gradual change, yet evolution sometimes takes remarkable leaps. Such evolutionary innovations are often linked to gene duplication through one of three basic scenarios: an extra copy can increase protein levels, different ancestral subfunctions can be split over the copies and evolve distinct regulation, or one of the duplicates can develop a novel function. Although there are numerous examples for all these trajectories, the underlying molecular mechanisms remain obscure, mostly because the preduplication genes and proteins no longer exist. Here, we study a family of fungal metabolic enzymes that hydrolyze disaccharides, and that all originated from the same ancestral gene through repeated duplications. By resurrecting the ancient genes and proteins using high-confidence predictions from many fungal genome sequences available, we show that the very first preduplication enzyme was promiscuous, preferring maltose-like substrates but also showing trace activity towards isomaltose-like sugars. After duplication, specific mutations near the active site of one copy optimized the minor activity at the expense of the major ancestral activity, while the other copy further specialized in maltose and lost the minor activity. Together, our results reveal how the three basic trajectories for gene duplicates cannot be separated easily, but instead intertwine into a complex evolutionary path that leads to innovation.
Citation: Voordeckers K, Brown CA, Vanneste K, van der Zande E, Voet A, et al. (2012) Reconstruction of Ancestral Metabolic Enzymes Reveals Molecular Mechanisms Underlying Evolutionary Innovation through Gene Duplication. PLoS Biol 10(12): e1001446. doi:10.1371/journal.pbio.1001446
Academic Editor: Joseph W. Thornton, University of Chicago, United States of America
Received: February 23, 2012; Accepted: October 30, 2012; Published: December 11, 2012
Copyright: © 2012 Voordeckers et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Funding: S. Maere and K. Vanneste are fellows of the Fund for Scientific Research-Flanders (FWO). Research in the lab of KJV is supported by the Human Frontier Science Program, ERC Starting Grant 241426, VIB, EMBO YIP program, KU Leuven, FWO, IWT and the AB InBev Baillet-Latour foundation. Research in the lab of SM is supported by VIB, Ghent University, FWO and IWT. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Competing interests: The authors have declared that no competing interests exist.
Abbreviations: AA, amino acid; AIC, Akaike information criterion; anc, ancestral; BEB, Bayes empirical Bayes; BMCMC, Bayesian Markov chain Monte Carlo; df, degree of freedom; EAC, escape from adaptive conflict; GTR, generalized time reversible; IAD, innovation-amplification-divergence; JTT, Jones, Taylor and Thornton; LBA, long branch attraction; LG+I+G, Le and Gascuel+invariable sites+gamma distributed rate heterogeneity; LRT, likelihood ratio test; MalS, maltase; ML, maximum likelihood; Ima, isomaltase; WAG, Whelan and Goldman
* E-mail: Steven.Maere@psb.vib-ugent.be (SM); Kevin.Verstrepen@biw.vib-kuleuven.be (KJV)
FREE PDF GRATIS
+++++
+++++
NOTA DESTE BLOGGER
Doug Axe escreveu um artigo, Belgian waffle [Waffle belga], demonstrando por que não está convencido das conclusões desta pesquisa: nenhuma novidade científica que não sabíamos foi apresentada.
Doug Axe escreveu um artigo, Belgian waffle [Waffle belga], demonstrando por que não está convencido das conclusões desta pesquisa: nenhuma novidade científica que não sabíamos foi apresentada.