DNA como um perfeito computador quântico: mero acaso, fortuita necessidade ou design inteligente?

quinta-feira, maio 23, 2024

DNA as a perfect quantum computer based on the quantum physics principles

R. Riera Aroche, Y. M. Ortiz García, M. A. Martínez Arellano & A. Riera Leal

Scientific Reports volume 14, Article number: 11636 (2024)

Symmetries of DNA canonical base pairs quantum informational cryptography. (A) Chemical structure of the nitrogenous bases, pyrimidines, and purines. (B) A-T and C-G, in their mutual connection, have the same functional quantum state while retaining different structures and morphologies.


DNA is a complex multi-resolution molecule whose theoretical study is a challenge. Its intrinsic multiscale nature requires chemistry and quantum physics to understand the structure and quantum informatics to explain its operation as a perfect quantum computer. Here, we present theoretical results of DNA that allow a better description of its structure and the operation process in the transmission, coding, and decoding of genetic information. Aromaticity is explained by the oscillatory resonant quantum state of correlated electron and hole pairs due to the quantized molecular vibrational energy acting as an attractive force. The correlated pairs form a supercurrent in the nitrogenous bases in a single band-molecular orbital (-MO). The MO wave function is assumed to be the linear combination of the n constituent atomic orbitals. The central Hydrogen bond between Adenine (A) and Thymine (T) or Guanine (G) and Cytosine (C) functions like an ideal Josephson Junction. The approach of a Josephson Effect between two superconductors is correctly described, as well as the condensation of the nitrogenous bases to obtain the two entangled quantum states that form the qubit. Combining the quantum state of the composite system with the classical information, RNA polymerase teleports one of the four Bell states. DNA is a perfect quantum computer.

FREE PDF GRATIS: Science Reports