Evolução dinâmica dos cromossomos Y do grande símio

quarta-feira, fevereiro 10, 2021

Dynamic evolution of great ape Y chromosomes

Monika Cechova, Rahulsimham Vegesna, Marta Tomaszkiewicz, Robert S. Harris, Di Chen, Samarth Rangavittal, Paul Medvedev, and Kateryna D. Makova

PNAS October 20, 2020 117 (42) 26273-26280; first published October 5, 2020; https://doi.org/10.1073/pnas.2001749117

Edited by Amanda M. Larracuente, University of Rochester, Rochester, NY, and accepted by Editorial Board Member Daniel L. Hartl September 3, 2020 (received for review January 30, 2020)

Evolution of Y chromosome gene content in great apes. 


Significance

The male-specific Y chromosome harbors genes important for sperm production. Because Y is repetitive, its DNA sequence was deciphered for only a few species, and its evolution remains elusive. Here we compared the Y chromosomes of great apes (human, chimpanzee, bonobo, gorilla, and orangutan) and found that many of their repetitive sequences and multicopy genes were likely already present in their common ancestor. Y repeats had increased intrachromosomal contacts, which might facilitate preservation of genes and gene regulatory elements. Chimpanzee and bonobo, experiencing high sperm competition, underwent many DNA changes and gene losses on the Y. Our research is significant for understanding the role of the Y chromosome in reproduction of nonhuman great apes, all of which are endangered.

Abstract

The mammalian male-specific Y chromosome plays a critical role in sex determination and male fertility. However, because of its repetitive and haploid nature, it is frequently absent from genome assemblies and remains enigmatic. The Y chromosomes of great apes represent a particular puzzle: their gene content is more similar between human and gorilla than between human and chimpanzee, even though human and chimpanzee share a more recent common ancestor. To solve this puzzle, here we constructed a dataset including Ys from all extant great ape genera. We generated assemblies of bonobo and orangutan Ys from short and long sequencing reads and aligned them with the publicly available human, chimpanzee, and gorilla Y assemblies. Analyzing this dataset, we found that the genus Pan, which includes chimpanzee and bonobo, experienced accelerated substitution rates. Pan also exhibited elevated gene death rates. These observations are consistent with high levels of sperm competition in Pan. Furthermore, we inferred that the great ape common ancestor already possessed multicopy sequences homologous to most human and chimpanzee palindromes. Nonetheless, each species also acquired distinct ampliconic sequences. We also detected increased chromatin contacts between and within palindromes (from Hi-C data), likely facilitating gene conversion and structural rearrangements. Our results highlight the dynamic mode of Y chromosome evolution and open avenues for studies of male-specific dispersal in endangered great ape species.

sex chromosomespalindromesgene content evolution

FREE PDF GRATIS: PNAS Sup. Info.