O pipeline de rastreamento de células revela como os circuitos de motores são construídos: mero acaso, fortuita necessidade ou design inteligente?

terça-feira, novembro 26, 2019

Cell Volume 179, ISSUE 2, P355-372.e23, October 03, 2019

Single-Cell Reconstruction of Emerging Population Activity in an Entire Developing Circuit

Yinan Wan, Ziqiang Wei, Loren L. Looger, Minoru Koyama, Shaul Druckmann, Philipp J. Keller


 
Source/Fonte: Nature

Highlights

• Neurons are tracked from birth to entire circuit at cell-type and functional levels

• Neurogenesis and emergence of coordinated activity is analyzed at a single-cell level

• Motoneurons, active first, form ensembles that synchronize globally, based on size

• Neuron maturation is stereotyped, based on birth time and anatomical origin

Summary

Animal survival requires a functioning nervous system to develop during embryogenesis. Newborn neurons must assemble into circuits producing activity patterns capable of instructing behaviors. Elucidating how this process is coordinated requires new methods that follow maturation and activity of all cells across a developing circuit. We present an imaging method for comprehensively tracking neuron lineages, movements, molecular identities, and activity in the entire developing zebrafish spinal cord, from neurogenesis until the emergence of patterned activity instructing the earliest spontaneous motor behavior. We found that motoneurons are active first and form local patterned ensembles with neighboring neurons. These ensembles merge, synchronize globally after reaching a threshold size, and finally recruit commissural interneurons to orchestrate the left-right alternating patterns important for locomotion in vertebrates. Individual neurons undergo functional maturation stereotypically based on their birth time and anatomical origin. Our study provides a general strategy for reconstructing how functioning circuits emerge during embryogenesis.
 
 
FREE PDF GRATIS: Cell