Letter
The industrial melanism mutation in British peppered moths is a transposable element
Arjen E. van’t Hof, Pascal Campagne, Daniel J. Rigden, Carl J. Yung, Jessica Lingley, Michael A. Quail, Neil Hall, Alistair C. Darby & Ilik J. Saccheri
Affiliations Contributions Corresponding author
Nature 534, 102–105 (02 June 2016) doi:10.1038/nature17951
Received 03 July 2015 Accepted 22 March 2016 Published online 01 June 2016
Discovering the mutational events that fuel adaptation to environmental change remains an important challenge for evolutionary biology. The classroom example of a visible evolutionary response is industrial melanism in the peppered moth (Biston betularia): the replacement, during the Industrial Revolution, of the common pale typica form by a previously unknown black (carbonaria) form, driven by the interaction between bird predation and coal pollution 1. The carbonaria locus has been coarsely localized to a 200-kilobase region, but the specific identity and nature of the sequence difference controlling the carbonaria–typica polymorphism, and the gene it influences, are unknown2. Here we show that the mutation event giving rise to industrial melanism in Britain was the insertion of a large, tandemly repeated, transposable element into the first intron of the gene cortex. Statistical inference based on the distribution of recombined carbonaria haplotypes indicates that this transposition event occurred around 1819, consistent with the historical record. We have begun to dissect the mode of action of the carbonaria transposable element by showing that it increases the abundance of a cortex transcript, the protein product of which plays an important role in cell-cycle regulation, during early wing disc development. Our findings fill a substantial knowledge gap in the iconic example of microevolutionary change, adding a further layer of insight into the mechanism of adaptation in response to natural selection. The discovery that the mutation itself is a transposable element will stimulate further debate about the importance of ‘jumping genes’ as a source of major phenotypic novelty 3.
Subject terms: Evolutionary genetics Gene expression
Subscription or payment needed/Requer assinatura ou pagamento: Nature
+++++
Professores, pesquisadores e alunos de universidades públicas e privadas com acesso ao Portal de Periódicos CAPES/MEC podem ler gratuitamente esta carta na Nature e mais 30.000 publicações científicas.