Torque humano não está presente no cérebro do chimpanzé

sexta-feira, dezembro 15, 2017

NeuroImage Volume 165, 15 January 2018, Pages 285-293

Human torque is not present in chimpanzee brain

XiangLi a, Timothy J.Crow, b, William D.Hopkins, c, d, Qiyong Gong, e, Neil Roberts, a

a School of Clinical Sciences, University of Edinburgh, EH16 4TJ, United Kingdom

b POWIC, University Department of Psychiatry, Warneford Hospital, Oxford, OX3 7JX, United Kingdom

c Yerkes National Primate Research Center, Atlanta, GA 30029, USA

d Neuroscience Institute, Georgia State University, Atlanta, GA 30302, USA

e Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China

Received 28 June 2017, Revised 3 October 2017, Accepted 8 October 2017, Available online 12 October 2017.

 Species difference in left-right positional brain asymmetry (AsymLR).


We searched for positional brain surface asymmetries measured as displacements between corresponding vertex pairs in relation to a mid-sagittal plane in Magnetic Resonance (MR) images of the brains of 223 humans and 70 chimpanzees. In humans deviations from symmetry were observed: 1) a Torque pattern comprising right-frontal and left-occipital “petalia” together with downward and rightward “bending” of the occipital extremity, 2) leftward displacement of the anterior temporal lobe and the anterior and central segments of superior temporal sulcus (STS), and 3) posteriorly in the position of left occipito-temporal surface accompanied by a clockwise rotation of the left Sylvian Fissure around the left-right axis. None of these asymmetries was detected in the chimpanzee, nor was associated with a sex difference. However, 4) an area of cortex with its long axis parallel to the olfactory tract in the orbital surface of the frontal lobe was found in humans to be located higher on the left in females and higher on the right in males. In addition whereas the two hemispheres of the chimpanzee brain are equal in extent in each of the three dimensions of space, in the human brain the left hemisphere is longer (p = 3.6e-12), and of less height (p = 1.9e-3), but equal in width compared to the right. Thus the asymmetries in the human brain are potential correlates of the evolution of the faculty of language.


Torque Petalia Occipital bending Asymmetry Chimpanzee Superior temporal sulcus

Subscription or payment needed/Requer assinatura ou pagamentoNeuroImage