Herança epigenética e seu papel em biologia evolucionária - reavaliação e novas perspectivas

segunda-feira, junho 06, 2016

Biology 2016, 5(2), 24; doi:10.3390/biology5020024


Epigenetic Inheritance and Its Role in Evolutionary Biology: Re-Evaluation and New Perspectives

Warren Burggren

Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203-5017, USA

Academic Editors: Chris O'Callaghan, Jukka Finne and John S. Torday

Received: 16 March 2016 / Revised: 26 April 2016 / Accepted: 11 May 2016 / Published: 25 May 2016


Epigenetics increasingly occupies a pivotal position in our understanding of inheritance, natural selection and, perhaps, even evolution. A survey of the PubMed database, however, reveals that the great majority (>93%) of epigenetic papers have an intra-, rather than an inter-generational focus, primarily on mechanisms and disease. Approximately ~1% of epigenetic papers even mention the nexus of epigenetics, natural selection and evolution. Yet, when environments are dynamic (e.g., climate change effects), there may be an “epigenetic advantage” to phenotypic switching by epigenetic inheritance, rather than by gene mutation. An epigenetically-inherited trait can arise simultaneously in many individuals, as opposed to a single individual with a gene mutation. Moreover, a transient epigenetically-modified phenotype can be quickly “sunsetted”, with individuals reverting to the original phenotype. Thus, epigenetic phenotype switching is dynamic and temporary and can help bridge periods of environmental stress. Epigenetic inheritance likely contributes to evolution both directly and indirectly. While there is as yet incomplete evidence of direct permanent incorporation of a complex epigenetic phenotype into the genome, doubtlessly, the presence of epigenetic markers and the phenotypes they create (which may sort quite separately from the genotype within a population) will influence natural selection and, so, drive the collective genotype of a population.

Keywords: epigenetics; evolution; inheritance; natural selection; ecology; dynamics; climate change