As serpentes marinhas têm um sentido extra para viver na água: escala das escamas na transição da terra para o mar em cobras elapídeas

sábado, junho 18, 2016

The evolution of scale sensilla in the transition from land to sea in elapid snakes

Jenna M. Crowe-Riddell, Edward P. Snelling, Amy P. Watson, Anton Kyuseop Suh, Julian C. Partridge, Kate L. Sanders

Published 8 June 2016. DOI: 10.1098/rsob.160054

High-depth-of-field photographs of the heads of six elapid species: (a) Hydrophis schistosus, (b) Hydrophis platurus, (c) Aipysurus duboisii, (d) Emydocephalus annulatus, (e) Hydrelaps darwiniensis and (f) Pseudonaja textilis. Species are representative of (a–d) fully aquatic, (e) semi-aquatic and (f) terrestrial ecologies. Insets show sensilla within the postocular scale(s). Scale bar, 3 mm.


Scale sensilla are small tactile mechanosensory organs located on the head scales of many squamate reptiles (lizards and snakes). In sea snakes and sea kraits (Elapidae: Hydrophiinae), these scale organs are presumptive scale sensilla that purportedly function as both tactile mechanoreceptors and potentially as hydrodynamic receptors capable of sensing the displacement of water. We combined scanning electron microscopy, silicone casting of the skin and quadrate sampling with a phylogenetic analysis to assess morphological variation in sensilla on the postocular head scale(s) across four terrestrial, 13 fully aquatic and two semi-aquatic species of elapids. Substantial variation exists in the overall coverage of sensilla (0.8–6.5%) among the species sampled and is broadly overlapping in aquatic and terrestrial lineages. However, two observations suggest a divergent, possibly hydrodynamic sensory role of sensilla in sea snake and sea krait species. First, scale sensilla are more protruding (dome-shaped) in aquatic species than in their terrestrial counterparts. Second, exceptionally high overall coverage of sensilla is found only in the fully aquatic sea snakes, and this attribute appears to have evolved multiple times within this group. Our quantification of coverage as a proxy for relative ‘sensitivity’ represents the first analysis of the evolution of sensilla in the transition from terrestrial to marine habitats. However, evidence from physiological and behavioural studies is needed to confirm the functional role of scale sensilla in sea snakes and sea kraits.

Free PDF Gratis: Open Biology