Resolvendo os mistérios do universo plasma

segunda-feira, novembro 15, 2010

Solving the mysteries of the plasma universe

October 29, 2010 By Patricia Wieser

What powers the most luminous sources in the universe? How is the plasma state altered by ultra-strong magnetic field? How do magnetic explosions work?

These are among 10 major questions for plasma astrophysics identified in the recently released Report of the Workshop on Opportunities in Plasma Astrophysics (WOPA). Plasma — the fourth state of matter — is a hot, electrically charged gas that makes up the Sun and other stars, and fuels the production of fusion energy.

"Plasma physics governs much of the behavior of the visible universe at all scales, from tokamaks to extra-galactic jets that are 10 billion times larger than the solar system," said Stewart Prager, Director of the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL). It is precisely this close relationship between tokamak physics and astrophysical phenomena that provided the motivation for the workshop and report. A tokamak is a type of magnetic fusion energy experiment.

PPPL scientist Hantao Ji said WOPA represents the first time for a comprehensive assessment of the opportunities in plasma astrophysics. Ji and Prager worked with a team to co-produce the report and were co-chairs of the workshop, held at PPPL earlier this year.

This grassroots effort brought together experimentalists, astronomers, and computational scientists to identify the major puzzles at this intersection of laboratory physics and space science, and to map out new strategies for better understanding the plasma universe. "It helped us identify opportunities for working together and will be a step toward expanding the field of plasma astrophysics and unifying this diverse new field," Ji said


Read more here/Leia mais aqui: PhysOrg