Estratégias para cientistas dissidentes

domingo, junho 06, 2010

Strategies for Dissenting Scientists
Published in Journal of Scientific Exploration, Vol. 12, No. 4, 1998, pp. 605-616.

Brian Martin
email: bmartin@uow.edu.au


Abstract

Those who challenge conventional views or vested interests in science are likely to encounter difficulties. A scientific dissenter should first of all realize that science is a system of power as well as knowledge, in which interest groups play a key role and insiders have an extra advantage. Dissenters are likely to be ignored or dismissed. If they gain some recognition or outside support, they may be attacked. In the face of such obstacles, there are several strategies, including mimicking science, aiming at lower status outlets, enlisting patrons, seeking a different audience, exposing suppression of dissent, and building a social movement.

Keywords dissent; whistleblowing

Acknowledgments I thank Don Eldridge and David Hess for helpful comments on a draft.

Introduction

Science is normally presented to the public as an enterprise based on skepticism and openness to new ideas, in which evidence and argumentation are examined on their own merits. Trusting newcomers who present views that conflict with standard ideas may thus expect that their work will be given a prompt, fair, and incisive analysis, being accepted if it passes scrutiny and being given detailed reasons if not. When, instead, their work is ignored, ridiculed, or rejected without explanation, they assume that there has been some sort of mistake, and often begin a search to find the "right person" - someone who fits the stereotype of the open-minded scientist. This can be a long search!

Certain sorts of innovation are welcome in science, when they fall within established frameworks and do not threaten vested interests. But aside from this sort of routine innovation, science has many similarities to systems of dogma. Dissenters are not welcome. They are ignored, rejected, and sometimes attacked. To have their ideas examined fairly, it is wishful thinking to rely on the normal operation of the scientific reception system. To have a decent chance, dissenters need to develop a strategy. They need to understand the way science actually operates, to work out their goals, and then to formulate a plan to move towards those goals, taking into account likely obstacles and sources of support. The following sections cover, in turn, the dynamics of the scientific community, the problems faced by challengers, likely responses to dissenters, and strategies.

My perspective on dissent in science - which in a single article can only be outlined rather than fully justified - is based on many years’ experience as a scientist and social scientist both in presenting dissenting ideas as well as studying their reception. This includes debates over supersonic transport aircraft, nuclear power, fluoridation, nuclear winter, pesticides, and the origin of AIDS, with a special focus on the treatment of dissenters (e.g. Martin, 1979, 1981, 1986, 1991, 1996, 1997; Martin et al., 1986). Having given advice to many challengers, it is my perception that there is a great need to better understand the role of power in science, to be aware of the likely responses to dissenters, and to consciously examine and try out strategies.


The Dynamics of the Scientific Community

There are various ways to understand the way the scientific community operates, including as a search for truth, a puzzle-solving enterprise within paradigms (Kuhn, 1970), and a social enterprise in which scientists seek to enroll others, both humans and objects, to their own cause (Latour, 1987). To understand the response to dissenters, though, it is more useful to think of the scientific community in terms of "interests" (Barnes, 1977). Company owners have an interest in making a profit and scientists have an interest in publishing their papers and being recognized. "Interests" can be thought of in terms of a stake in money, power, status, privilege, or other advantages.

To talk of interests is to focus on the social organization of science. Often, when thinking about "science," people think of scientific knowledge, which is conceived of as some sort of essence above and beyond human interests. It is useful to remember that scientific knowledge is created by humans and, as a result, is inevitably shaped by human concerns (Watson, 1938). By understanding the social dynamics of the scientific community, it is possible to gain insight into processes that influence the direction, pace, and content of scientific knowledge. The study of the scientific community then leads back to interests.

Some types of interests are corporate, government, bureaucratic, professional, career, and psychological. In each case they can exert strong pressures on the direction of research and shape the response to challengers. Note that interests influence science without the necessity of conscious bias, since people’s world views are shaped by interests.

Corporations fund a large amount of research, naturally enough the sorts of research that are likely to lead to corporate advantage. A large corporation can be considered to have a "vested interest" in certain types of research and certain results, because it has used these to build a position of power which it wishes to maintain. A pharmaceutical company, for example, has a strong interest in its best-selling drugs. It will fund research into drugs that it can patent and sell, but not into nonpatentable substances. It has an interest in opposing treatments that do not rely on drugs at all (Abraham, 1995).

Governments are much like large corporations, funding research that serves their interests. The military, a key part of the governmental apparatus, funds lots of research into weapons but very little into methods of nonviolent struggle such as strikes, boycotts, rallies, and noncooperation. The influence of governments and corporations on the direction and content of scientific research is considerable (Boffey, 1975; Dickson, 1984; Primack & von Hippel, 1974).

Governments, corporations and other large organizations are typically structured as bureaucracies, with a hierarchy and division of labour. Bureaucratic elites resist challenges to their power and privilege even when changes would benefit the organization as a whole. For example, military innovations such as accurate naval gunnery and the machine gun were resisted by military commanders for decades because they upset normal organizational arrangements. Scientific research in corporations, governments, and universities is organized bureaucratically, to some extent. Top scientific administrators have a vested interest in maintaining their power (Blissett, 1972; Elias, Martins, & Whitley, 1982; Rahman, 1972).

Professions such as medicine and law can be understood as systems for maintaining control over an occupation, which includes controlling working conditions and entry to the field. Professions have a vested interest in this control, which sometimes is protected by laws preventing nonprofessionals from practicing (Collins, 1979; Larson, 1977).

Individual scientists have interests in their own careers, for example in publishing papers, gaining jobs and promotions, and winning honors. They can also develop a psychological interest in particular theories and methods. If a challenger comes along with a simple alternative to the theory on which they have built their careers, most scientists are not likely to be receptive, since their status will be undermined and their lifelong commitment apparently wasted (Mitroff, 1974).

These different interests are often interconnected. Governments fund research by corporations and universities. Corporations fund research by medical professionals. Individual scientists build up careers in government or corporate labs.

The interests model of science is quite a contrast to the traditional model of a search for truth which is guided by norms such as skepticism, universality, and communality. The usefulness of these norms for describing science has been questioned (Mulkay, 1976). Indeed, science is possibly just as well described by "counternorms" such as emotional commitment and organized dogmatism (Mitroff, 1974). Using the interests model, we would expect the scientific community to respond to the most salient interests.

For example, because certain chemical companies make a lot of money selling pesticides, they heavily fund research into pesticides, do not fund much research into alternatives to pesticides, and are threatened by adverse findings about pesticides. Just as important as these direct links between interests and research are indirect influences. Priorities for seemingly independent fields can be influenced by chemical company interests.

Another important interest is that of the scientific community as a whole in the status of science as a superior method of gaining knowledge. Scientific experts are given greater credibility because they are seen as having special access to truth about the world. Scientific truths are not supposed to be tainted by interests, which is why scientific knowledge is portrayed as rising above the limitations of the system that created it.

Interests are an influence on the way science proceeds, but do not determine it. There is always some scope for resistance.

Incidentally, within the social studies of science, analysis of interests has become quite unfashionable. Perhaps this is related to the field becoming more career oriented and hence less helpful to those wanting to expose vested interests!


Problems Faced by Challengers

If there are strong interests behind a particular position or theory, then the task of challengers is difficult. This difficulty is aggravated if challengers are outsiders who don’t "play the game." If you are a talented scientist with a good track record, working at an elite institution, and write a conventional looking scientific paper - but with challenging ideas - there may be difficulties enough. For anyone else, it is much tougher.

If you are from a low status institution, that is a big disadvantage (Peters & Ceci, 1982). It is even worse to have no institution at all and to write from a home address. It is also a disadvantage to be unknown in the field, to have no prior publications, to be a female, to be too young or too old, or to be from a country with low scientific status.

Although the rhetoric about science is that it is ideas that count, not who expresses them, in practice ideas are commonly judged by their source. Ideas are given much more credibility if they come from a respected source. Outsiders have an uphill battle.

Just as important is presenting one’s ideas in the expected way. A paper, to be recognized as scientific, must conform to the standard mold. This varies from field to field, but usually means a restrained, impersonal style, suitable references to earlier work, and use of jargon appropriate to the topic, all in a concise package that is similar to other writings in the field. Anyone who writes about their own personal discovery, not mentioning prior work, and writes for a general audience, has little chance of being published in a scientific journal even if the ideas are conventional and would be publishable if in standard form. Outsiders sometimes betray their ignorance of the usual style by using ALL CAPITALS and making bold claims.

Once again, rhetoric about science might suggest that contributions should be judged on their content rather than their appearance, but the reality is otherwise. Learning the standard style usually occurs during the conventional career route involving years of formal study and apprenticeship, plus working in a speciality to become familiar with prior work. Indeed, without being an active player in the field, it may be impossible to keep up, since this requires having access to the latest preprints, attending major conferences, or knowing key people. Furthermore, without coming through conventional channels, it is often impossible to gain access to equipment needed to do the most advanced work in the field.

Arguably, one reason that science is so successful is that it is a very conservative and insular operation. By concentrating enormous resources on solving the puzzles that are on the immediate frontier, scientists are able to make steady advances and occasional breakthroughs. (Because of the role of funding and paradigms, this tends to be in areas that are useful to powerful interests.) The cost of this focus on current puzzles is a neglect of foundational questions, anomalies, and unconventional ideas.

Typical working scientists have a hard time keeping up with conventional research in their speciality. There are experiments to be done, grant applications to write, papers to be written, seminars and conferences to attend, and perhaps teaching. Research is very competitive. Delay may mean losing out to others in the field. It may mean loss of a publication, a job, a promotion, perhaps a discovery. In this context, many scientists do not want to "waste" their time looking at someone else’s claim to have made a breakthrough, unless it is a top person in the field. What do they have to gain by spending time helping an outsider? Most likely, the alleged discovery will turn out to be pointless or wrong from the standard point of view. If the outsider has made a genuine discovery, that means the outsider would win rewards at the expense of those already in the field who have invested years of effort in the conventional ideas.


Responses

A person who challenges the conventional wisdom is likely first to be ignored, then dismissed and finally, if these responses are inadequate, attacked. The first stage is being ignored. When an outsider sends a paper to established scientists, for example, many will not bother to reply. When an entire dissident field establishes its own publications, it may be ignored by the mainstream.

Dismissal is the most common response when seeking formal recognition in orthodox channels. A paper sent to a top journal may be rejected without being sent to referees. Editors often perform a screening function, deciding what is credible enough to warrant serious consideration. Editors can also affect the likelihood of acceptance by their selection of referees.

Sometimes, though, dissidents cannot be silenced by ignoring and rejecting them. They may develop their own constituency or gain publicity. For example, nonscientists who point out the healing power of herbs, based on their own observations, are usually ignored by medical researchers. Some researchers carry out careful studies of herbs and seek publication; they are likely to encounter difficulties or, if their work is published, be ignored by the mainsteam. However, there is a thriving alternative health movement which is very receptive to any findings about the benefits of herbs. This poses a threat to corporations, governments, and scientists with a stake in the conventional approach based on synthetic drugs. At this stage, one possibility is attack.

A scientist can be attacked in various ways, including ostracism, petty harassment, excessive scrutiny, blocking of publications, denial of jobs or tenure, blocking access to research facilities, withdrawal of research grants, threats, punitive transfers, formal reprimands, demotion, spreading of rumors, deregistration, dismissal, and blacklisting, and threats of any of these. There are numerous documented cases in various fields. For example, many scientists pursuing research critical of pesticides or proposing alternatives to pesticides have come under attack, for example having grants removed or being threatened with dismissal (Martin, 1996; van den Bosch, 1978). Dentists critical of fluoridation have been threatened with deregistration (Martin, 1991; Waldbott, 1965). Government scientists critical of nuclear power have lost their staff and been transferred as a form of harassment (Freeman, 1981; Martin, 1986). Parapsychologists have encountered difficulties in their careers (Hess, 1992).

Dr John Coulter, a scientist at the Institute of Medical and Veterinary Science in Adelaide, South Australia, spoke out about about various environmental and health issues. After he commented about hazards of pesticides in a talk, the pesticide manufacturer wrote a letter of complaint to the director of the Institute. After Coulter did a study of the mutagenic potential of a sterilising agent used at the Institute and released his results to the workers, he was dismissed (Martin et al., 1986).

Dr George Waldbott, a prominent allergist and author of hundreds of scientific papers, was the leading US opponent of fluoridation from the mid 1950s through the 1970s. Waldbott was visited by a German profluoridationist who misrepresented his intentions, gained access to Waldbott’s files and then wrote a critical account Waldbott’s methods. This misleading account later appeared in a dossier on opponents of fluoridation compiled by the American Dental Association and was used to undermine Waldbott wherever he appeared (Waldbott, 1965).

The actual cases that are publicized are the tip of the proverbial iceberg, for several reasons. Many dissenters do not make an issue of attacks, preferring to keep a low profile and continue their careers. Also, only some types of attacks are easy to document, such as reprimands and dismissals. It is very difficult to prove that failure to get a job or grant is due to discrimination.

Attacks on dissidents are never admitted as such. They are always justified as being due to inadequacies on the part of the dissident, such as low quality work or inappropriate behavior. To determine whether actions against someone are justifiable, it is useful to use the "double standard test." Is the same action taken against everyone with the same level of performance? Or is the person who is challenging conventional wisdom harassed or reprimanded, while others with similar performance are unaffected?

Another useful test is to ask whether the response is in line with normal scientific behavior. If a scientist writes a challenging paper, it should be considered quite legitimate for someone to call or write to the scientist questioning the method or results or complaining about bias. This is a process of engagement and dialogue, and does not jeopardize the scientist’s ability to continue research. Even strong language should be tolerated if it is directly to the scientist or published in a journal where there is a timely opportunity to reply. On the other hand, when a critic threatens a law suit or writes to the scientist’s boss or institution making a complaint, this is obviously an attempt to intimidate or hinder the scientist’s work or career. The "call to the boss" is very common and is an excellent indicator that a response is an attempt to suppress dissent rather than engage in dialogue.

Attacks are much the same whether they are made against scientists presenting challenging ideas, against whistleblowers who speak out about scientific fraud or corporate corruption, or against scapegoats who become targets for whatever reason. Most scientists are completely unprepared for attacks. They do not realize that science can be a ruthless power play in which the most underhanded methods may be used against those who challenge vested interests. They believe, incorrectly, that formal channels, such as grievance procedures, professional associations, and courts, provide reliable avenues for justice, when actually they are strongly weighted in favor of those with more money and power. In order to survive and thrive as a challenger, it is necessary to understand the operations of power as well as knowledge. Most of all, it is important to work out a strategy.
...

Read more here/Leia mais aqui: Strategies for Dissenting Scientists

+++++