As nuvens do desconhecimento

quarta-feira, março 24, 2010

The science of climate change

The clouds of unknowing

There are lots of uncertainties in climate science. But that does not mean it is fundamentally wrong

Mar 18th 2010 | From The Economist print edition


FOR anyone who thinks that climate science must be unimpeachable to be useful, the past few months have been a depressing time. A large stash of e-mails from and to investigators at the Climatic Research Unit of the University of East Anglia provided more than enough evidence for concern about the way some climate science is done. That the picture they painted, when seen in the round—or as much of the round as the incomplete selection available allows—was not as alarming as the most damning quotes taken out of context is little comfort. They offered plenty of grounds for both shame and blame.

At about the same time, glaciologists pointed out that a statement concerning Himalayan glaciers in the most recent report of the Intergovernmental Panel on Climate Change (IPCC) was wrong. This led to the discovery of other poorly worded or poorly sourced claims made by the IPCC, which seeks to create a scientific consensus for the world’s politicians, and to more general worries about the panel’s partiality, transparency and leadership. Taken together, and buttressed by previous criticisms, these two revelations have raised levels of scepticism about the consensus on climate change to new heights.

Increased antsiness about action on climate change can also be traced to the recession, the unedifying spectacle of last December’s climate-change summit in Copenhagen, the political realities of the American Senate and an abnormally cold winter in much of the northern hemisphere. The new doubts about the science, though, are clearly also a part of that story. Should they be?

In any complex scientific picture of the world there will be gaps, misperceptions and mistakes. Whether your impression is dominated by the whole or the holes will depend on your attitude to the project at hand. You might say that some see a jigsaw where others see a house of cards. Jigsaw types have in mind an overall picture and are open to bits being taken out, moved around or abandoned should they not fit. Those who see houses of cards think that if any piece is removed, the whole lot falls down. When it comes to climate, academic scientists are jigsaw types, dissenters from their view house-of-cards-ists.

The defenders of the consensus tend to stress the general consilience of their efforts—the way that data, theory and modelling back each other up. Doubters see this as a thoroughgoing version of “confirmation bias”, the tendency people have to select the evidence that agrees with their original outlook. But although there is undoubtedly some degree of that (the errors in the IPCC, such as they are, all make the problem look worse, not better) there is still genuine power to the way different arguments and datasets in climate science tend to reinforce each other.

The doubters tend to focus on specific bits of empirical evidence, not on the whole picture. This is worthwhile—facts do need to be well grounded—but it can make the doubts seem more fundamental than they are. People often assume that data are simple, graspable and trustworthy, whereas theory is complex, recondite and slippery, and so give the former priority. In the case of climate change, as in much of science, the reverse is at least as fair a picture. Data are vexatious; theory is quite straightforward. Constructing a set of data that tells you about the temperature of the Earth over time is much harder than putting together the basic theoretical story of how the temperature should be changing, given what else is known about the universe in general.
Absorb and reflect

The most relevant part of that universal what-else is the requirement laid down by thermodynamics that, for a planet at a constant temperature, the amount of energy absorbed as sunlight and the amount emitted back to space in the longer wavelengths of the infra-red must be the same. In the case of the Earth, the amount of sunlight absorbed is 239 watts per square metre. According to the laws of thermodynamics, a simple body emitting energy at that rate should have a temperature of about –18ºC. You do not need a comprehensive set of surface-temperature data to notice that this is not the average temperature at which humanity goes about its business. The discrepancy is due to greenhouse gases in the atmosphere, which absorb and re-emit infra-red radiation, and thus keep the lower atmosphere, and the surface, warm (see the diagram below). The radiation that gets out to the cosmos comes mostly from above the bulk of the greenhouse gases, where the air temperature is indeed around –18ºC.

...

Read more here/Leia mais aqui: The Economist